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Abstract

We describe a new suite of computational benchmarks that models applications
featuring multiple levels of parallelism. Such parallelism is often available in realistic
flow computations on systems of meshes, but had not previously been captured in
benchmarks. The new suite, named NPB (NAS Parallel Benchmarks) Multi-Zone, is
extended from the NPB suite, and involves solving the application benchmarks LU, BT
and SP on collections of loosely coupled discretization meshes. The solutions on the
meshes are updated independently, but after each time step they exchange boundary
value information. This strategy provides relatively easily exploitable coarse-grain
parallelism between meshes. Three reference implementations are available: one serial,
one hybrid using the Message Passing Interface (MPI) and OpenMP, and another
hybrid using a shared memory multi-level programming model (SMP+OpenMP). We
examine the effectiveness of hybrid parallelization paradigms in these implementations
on three different parallel computers. We also use an empirical formula to investigate
the performance characteristics of the hybrid parallel codes.

1 Introduction

The NAS Parallel Benchmarks (NPB) [1] are well-known problems for testing the capabilities
of parallel computers and parallelization tools. They exhibit mostly fine-grain exploitable
parallelism and are almost all iterative, requiring multiple data exchanges between processes
within each iteration. Implementations of NPB in MPI [2] and OpenMP [5] take advantage
of this fine-grain parallelism. However, many important scientific problems feature several
levels of parallelism, and this property is not reflected in NPB. For example, in the NASA
production flow solver program OVERFLOW [4], geometrically complex domains are covered
by sets of partially overlapping discretization meshes, called zones. Solutions on each zone
can be computed independently, providing coarse-grain parallelism. Additionally, fine-grain,
loop-level parallelism can be exploited within each zone.

To mimic such applications, we created the NPB Multi-Zone (NPB-MZ) versions [9],
which contain three families of multi-zone benchmarks, derived from the NPB. These multi-
zone benchmarks stress the need to exploit both levels of parallelism for efficiency and to
balance the computational load. In this paper, we describe three reference implementa-
tions of NPB-MZ – one serial and two hybrid parallel. The first hybrid implementation
uses the Message Passing Interface (MPI) to communicate data related to overlap regions
of zones, and OpenMP to parallelize loops within each zone. It is fully portable and can
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run on shared and distributed-shared memory systems, as well as on clusters of symmetric
multi-processors. The second hybrid implementation uses a shared-memory parallel library
(SMPlib) [6] to exchange data related to overlap regions of zones, and OpenMP to paral-
lelize loops within each zone. This version takes advantage of shared memory buffers for
efficient data exchange between processes. It is an efficient approach for exploiting multi-
level parallelism on shared memory systems. We will use an empirical formula to investigate
the performance characteristics of the multi-zone benchmarks and also to estimate the best
process-thread combination for running hybrid codes.

In the following, we briefly describe the multi-zone benchmarks in Section 2. We then dis-
cuss the three reference implementations of NPB-MZ, including the programming paradigms
used, in Section 3. Section 4 presents performance results and characteristics of the hybrid
NPB-MZ benchmarks running on several parallel computers. We draw our conclusions in
the last section.

2 The Multi-Zone Benchmarks

The application benchmarks of NPB as specified in [1] compute discrete solutions of the
unsteady, compressible Navier-Stokes equations in three spatial dimensions, using Lower-
Upper symmetric Gauss-Seidel (LU), Scalar Penta-diagonal (SP), and Block Tri-diagonal
(BT) algorithms. Each solver operates on a structured discretization mesh that is a logical
cube. In realistic applications, however, a single such mesh is often not sufficient to describe
a complex domain, and multiple meshes or zones are used to cover it. In the production code
OVERFLOW [4], the flow equations are solved independently in each zone, and after each
iteration the zones exchange boundary values with their immediate neighbors with which
they overlap.

We take the OVERFLOW approach [4] in creating the NPB Multi-Zone versions of LU,
BT, and SP, namely LU-MZ, BT-MZ, and SP-MZ. Detailed specification of the multi-zone
benchmarks is given in [9]. We will give a summary below: aspects common to all three
benchmarks in Section 2.1, and differences between individual benchmarks in the subsequent
sections. We note that the selection of different NPB solvers for the new benchmarks is fairly
arbitrary. The major difference between the three multi-zone problems lies in the way the
zones are created out of the single overall mesh.

2.1 Common Benchmark Properties

For each benchmark problem a logically rectangular discretization mesh is divided into a
two-dimensional horizontal tiling of three-dimensional zones. To avoid pathologically shaped
zones after partitioning the overall mesh in the two horizontal directions (x and y), we change
the aspect ratios of the meshes of the original NPB. For each problem class the total number
of points in all zones is kept approximately the same as in the original NPB. Table 1 lists
the aggregate problem sizes and the number of zones for different problem classes in the
multi-zone versions. Memory usage is estimated by assuming 24 double-precision variables
for each mesh point.

Within all zones, LU, BT, or SP problems are solved to advance the time-dependent
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Table 1: Aggregate problem size, the number of zones, and the memory requirement for each
problem class. Gx, Gy, and Gz are aggregate spatial dimensions.

Class Aggregate Size Zones (x-zones× y-zones) Memory
(Gx × Gy × Gz) LU-MZ SP-MZ BT-MZ

S 24 × 24 × 6 4 × 4 2 × 2 2 × 2 1 MB
W 64 × 64 × 8 4 × 4 4 × 4 4 × 4 6 MB
A 128 × 128 × 16 4 × 4 4 × 4 4 × 4 50 MB
B 304 × 208 × 17 4 × 4 8 × 8 8 × 8 200 MB
C 480 × 320 × 28 4 × 4 16 × 16 16 × 16 800 MB
D 1632 × 1216 × 34 4 × 4 32 × 32 32 × 32 12.8 GB

solution, using exactly the same methods as described in [1, 8]. The mesh spacings of all
zones of a particular problem class are identical, and the overlap between neighboring zones
is exactly one such spacing, so that discretization points in overlap regions coincide exactly.

Exchange of boundary values between zones takes place after each time step, which
provides the fairly loose coupling of the otherwise independent solution processes within the
zones. Solution values at points one mesh spacing away from each vertical zone face are
copied to the coincident boundary points of the neighboring zone. The problem is periodic
in the two horizontal directions, so donor point values at the extreme sides of the mesh
system are copied to boundary points at the opposite ends of the system.

2.2 LU-MZ

For all problem classes the number of zones in each of the two horizontal dimensions equals
four (i.e. 4 × 4). The overall mesh is partitioned such that the zones are identical in size,
which makes it relatively easy to balance the load of the parallelized application. However,
the amount of coarse-grain parallelism is limited to 16, the total number of zones.

2.3 SP-MZ

As in the case of LU-MZ, the overall mesh is partitioned such that the zones are identical
in size. However, the number of zones in each of the two horizontal dimensions grows with
the problem size (see Table 1). It is relatively easy to balance the load of the parallelized
application.

2.4 BT-MZ

The number of zones in this benchmark grows with the problem size in the same fashion as
in SP-MZ (see Table 1). However, the overall mesh is now partitioned such that the sizes
of the zones span a significant range. This is accomplished by increasing sizes of successive
zones in a particular coordinate direction in a roughly geometric fashion. Except for class
S, the size ratio of the largest to smallest zone is approximately 20. This makes it harder to
balance the load than for SP-MZ and LU-MZ if the implementation is to take advantage of
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multi-level parallelism. The BT-MZ benchmark is a more realistic case. Examples of uneven
mesh tilings for the BT-MZ benchmark are shown in Figure 1.

Class BClass AClass S

Figure 1: Examples of uneven mesh tilings for three different classes of the BT-MZ bench-
mark, showing a horizontal cut through mesh system. Overlap regions are not depicted.

3 Implementations

In this section, we describe three reference implementations of the multi-zone benchmarks –
one serial and two hybrid parallel.

3.1 Serial Implementation

The serial implementation of NPB-MZ is based on the NPB3.0-SER release of NPB [5]. The
data flow of the serial NPB-MZ version is shown in Figure 2. The original single-zone problem
of LU, SP, and BT in NPB3.0-SER is first subdivided into multiple zones according to the
benchmark specifications as prescribed in [9]. Solutions for each zone are then initialized.
The benchmarking loop starts with a time step loop which contains a procedure (exch qbc)
to exchange boundary values of different zones. The discrete partial differential equation
solvers LU, SP, and BT are used for obtaining solution updates within each zone in the
new LU-MZ, SP-MZ, and BT-MZ, respectively. The solving stage includes procedures for
performing forcing term (right-hand-side) calculations and the Lower-Upper (for LU-MZ) or
Alternative Directional Implicit (for SP-MZ and BT-MZ) algorithm. The solution is then
verified for all zones for a given problem class.

3.2 Hybrid Implementation

Parallelism in the multi-zone benchmarks can be exploited with a two-level approach: a
coarse grained parallelization among zones and a fine grained parallelization within each zone.
The division (or data decomposition) of zones is natural except for exchanging overlapped
boundary values since solutions within each zone can be performed concurrently. The main
task is to balance the computational workload among processes.

In the following, we will first discuss the load balancing scheme. Our exploitations of the
two-level parallelization are both hybrid: we use either message passing (model one) or a
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shared-memory parallelization library (model two) to communicate data related to overlap
regions of zones, and OpenMP to parallelize loops within each zone. The second hybrid
model takes advantage of shared memory buffers and is an efficient way to exploit multi-
level parallelism on shared memory systems.

3.2.1 Zone Grouping and Load Balancing

Proper load balancing is critically important for efficient parallel computing. There are a
number of load balancing strategies for multi-zone overset mesh applications (see [3] for an
overview). We use a simple zone grouping strategy based on a bin-packing algorithm [10].
In a zone grouping strategy, the NZ zones need to be clustered into NG groups, where NG is
equal to the total number of processes, NP . Each zone group is then assigned to a process
for parallel execution. The goal is to distribute the computational workload evenly among
the zone groups while minimizing the inter-process communication.

In the bin-packing algorithm, we first estimate the computational workload of each zone
by counting the number of grid points in the zone. The NZ zones are then sorted by size
in descending order. In the beginning, the zone groups are empty. Successive zones in
the sorted list are assigned to the smallest group that satisfies the connectivity test with
other zones already in that group. The connectivity test examines any overlap between a
pair of zones and is only performed when two zone groups are close in size. Even though
communication costs in these benchmarks are small, as we will show in the next section,
co-locating overlapping zones reduces communication costs even further. The procedure
finishes when all zones are assigned to groups.

If the load cannot be well balanced with zone groups, we try to adjust the number of
OpenMP threads assigned to each process. A thread from the smallest group is reassigned
to the largest group, provided the load balance is improved after such a movement and the
number of threads in a group does not exceed a given system-dependent limit. For a node
in a distributed memory system, the number of threads is often limited to the number of
CPUs in the node. The process stops when no more movement occurs.

As an extreme case, Figure 3 illustrates the use of thread reassignment to improve the
load balance for the BT-MZ, Class C problem on NP = 256 with a total of 256 × 4 threads
(see Section 4.2 for a discussion on the notation), in which only one zone is assigned to each
process. Even though load balancing of SP-MZ and LU-MZ is trivial, we still use the same
algorithm to take into account the zone-to-zone connectivity.

3.2.2 MPI+OpenMP

The Message Passing Interface (MPI) is a widely accepted standard for writing message
passing programs and is supported on all modern parallel computers. The standard provides
the user with a programming model where processes communicate by calling library routines
to send to and receive messages from other processes. The programming model was designed
for distributed memory systems, but also works on shared memory systems. As clusters
of symmetric multi-processor machines have become popular, more and more applications
take advantage of the hardware architecture by using the hybrid programming model which
uses MPI for communication between symmetric multi-processor nodes and OpenMP for
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Figure 2: Schematic flow graph
of the multi-zone benchmarks
in sequential execution. Loops
(back arrows) are annotated
with their induction variable.
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Figure 3: Uneven zone size distribution of the BT-MZ
Class C before (light or blue line) and after (heavy or
red line) balancing with threads. The bottom figure
indicates number of threads assigned to each process.
There are a total of 256 × 4 threads.

parallelization within one node.
The MPI+OpenMP implementation of the multi-zone benchmarks is summarized in Fig-

ure 4. The number of MPI processes is defined at compilation time in order to avoid dynamic
memory allocation. Each process is first assigned with a group of zones and a given number
of OpenMP threads based on the load balancing scheme described in Section 3.2.1. There
is no dynamic load adjustment at run time. As in the sequential version (see Figure 2), so-
lutions for the zones assigned to each process are then initialized, followed by the time step
loop. Inter-process communication occurs inside the procedure exch qbc, which exchanges
boundary values of zones, including those assigned to different processes. There is no com-
munication during the LU, SP, or BT solving stage. The last stage (verification) performs a
reduction of solutions and residues from all zones for a given problem class.

The OpenMP parallelization within a zone is very similar to the OpenMP single-zone
version of NPB [5]. A single-level parallelization is used for the outermost parallel loops
in SP-MZ and BT-MZ, mainly loops over the third (z) mesh dimension. The OpenMP
parallelization of LU-MZ is on the loops over the second (y) mesh dimension, mainly due
to the pipelined implementation of the LU solver and the fixed number of zones (thus,
increased y size as the problem size grows) for this benchmark. The increased y size allows
more efficient OpenMP parallelization in this dimension.

3.2.3 SMP+OpenMP

The second hybrid approach, SMP+OpenMP, is based on a multi-level parallel (MLP) pro-
gramming model, developed by Taft [7] at NASA Ames Research Center for achieving high
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Figure 4: Coarse grained parallelization with zone groups for the multi-zone benchmarks
using either MPI (left panel) or SMP (right panel) parallel programming model.

levels of parallel efficiency on shared memory machines. It exploits two-level parallelism in
applications: coarse-gained with forked processes and fine-grained (loop level) with OpenMP
threads. (We refer to this coarse-gained parallelization with forked processes as the SMP, or
Shared Memory Parallel, model.) Communication between the forked processes is done by
directly accessing data in a shared memory buffer. Coupled with the second level of paral-
lelism, MLP has demonstrated scalability on more than 500 processors for realistic scientific
problems [7]. In the SMP model, a program starts with a single process (the master process)
to perform initialization, such as reading input data from a file, and to set up necessary
shared memory arena (or buffer) for communication via the Unix mmap call. Additional
processes are then created via the Unix fork call. The forked processes have a private copy
of the virtual memory of the master process, except for the shared memory arena. Thus,
explicit broadcasting of input data is not necessary in this model as it would have been
required in a message passing program. The master and its forked processes then work on
the designated code segments in parallel and synchronize as needed.

The original MLP library (MLPlib) [7] consists of only three routines: MLP getmem to
allocate a piece of shared memory, MLP forkit to spawn processes, and MLP barrier to
synchronize processes. The MLPlib application program interface (API) includes a special
argument allowing thread-to-processor binding, or pinning, which has been shown to im-
prove performance of hybrid codes on machines with non-uniform memory access. The main
limitation of MLPlib is its lack of point-to-point synchronization primitives, which are useful
for more general classes of applications. The SMP library (SMPlib) [6] extends the MLPlib
concept by including the SMP Signal and SMP Wait primitives for point-to-point synchro-
nization between processes. A process may update a shared buffer and use SMP Signal to
inform another process of the availability of the data; the other process can use SMP Wait

for the notification (by signal) that it is safe to copy data from the shared buffer. The
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Signal/Wait approach is very flexible and in general has less communication overhead than
a global barrier. The complete description of the SMPlib API is given in [6].

The hybrid SMP+OpenMP and MPI+OpenMP implementations of the multi-zone bench-
marks are very similar. In particular, their OpenMP parallelizations are identical. The main
difference lies in the startup stage, as shown in Figure 4. Before forking processes, the master
process sets up zone groups based on the load balancing scheme described in Section 3.2.1
and allocates proper shared memory buffers for later process communication. As in the
MPI+OpenMP version, inter-process communication occurs inside the procedure exch qbc,
which copies boundary values of zones to/from the shared memory buffer with proper barrier
synchronizations. Overall, it is slightly easier to develop the hybrid SMP+OpenMP codes
than the corresponding MPI+OpenMP versions, mainly because the bookkeeping for process
communication in the SMP version is simpler.

4 Results

In this section we report performance results and characteristics of the hybrid NPB-MZ
benchmarks obtained on three different parallel machines. The sequential version of NPB-
MZ serves as a baseline implementation for other parallel implementations and for parallel
tools and compilers. We will not examine the performance of the sequentual codes in this
report.

4.1 Testing Platforms

For running the multi-zone benchmarks we used three different parallel computers:

• SGI Origin 3000: a 128-node ccNUMA machine with 4 CPUs per node and a single-
system image operating system,

• HP/Compaq Alpha SC45: a cluster of 348 shared memory nodes with 4 CPUs per
node, and

• IBM pSeries: a cluster of 208 shared memory nodes with 16 CPUs per node.

The main performance characteristics of a node in each system are summarized in Table 2.
The various compilers and compilation flags used in our tests are listed in Table 3. We used
the mpt.1.5.3.0 runtime system for running MPI programs on the SGI Origin 3000.

The SGI Origin 3000 (named Lomax), located at NASA Ames Research Center, is a
distributed shared-memory system with the SGI NUMA 3 architecture (i.e., the third gen-
eration non-uniform memory access). The system contains 128 C-bricks (or nodes) that are
connected by the NUMAlink3 interconnect network and are globally addressable through
a hardware cache-coherence protocol. The memory accessing time is about 175ns within a
local node and 470ns to a remote node.

The HP/Compaq AlphaServer SC45 (named Halem) is located at NASA Goddard Space
Flight Center. The system is a distributed-memory supercomputer that contains 348 Al-
phaServer ES45 nodes and uses high speed Intelligent Interconnects between nodes. Each
ES45 node incorporates four Alpha-EV68 processors running at 1.0 GHz or 1.25 GHz that
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Table 2: Architectural specifications of the nodes in the three parallel systems.

Machine CPU CPUs/ Clock Peak L1 L2 Memory/
Type Node (MHz) (GFlops/s) (KB) (MB) Node (GB)

SGI Origin 3000 R12K 4 400 0.8 32 8 2
HP/Compaq SC45 EV-68 4 1000 2.0 64 8 2
IBM pSeries Power3 16 375 1.5 128 8 2

Table 3: The compilers and compilation flags used in the tests.

Machine O/S Compiler Compilation flags
SGI Origin 3000 IRIX 6.5 MIPSpro 7.4 -O3 -mp
HP/Compaq SC45 TRU64 5.1A Compaq Fortran 5.5 -fast -omp
IBM pSeries AIX 5.1 XL Fortran 7.1 -O3 -qsmp=omp

share 2 GB of local memory. Our performance results were obtained on nodes running at
1.0 GHz.

The Power3 experiments reported in this paper were conducted on a single Nighthawk II
node of the 208-node IBM pSeries system (named Seaborg) running AIX 5.1 and located at
Lawrence Berkeley National Laboratory. The IBM Power3 was first introduced in 1998 as
part of the RS/6000 series. Each 375 MHz processor contains two floating-point units (FPUs)
that can issue a multiply-add (MADD) per cycle for a peak performance of 1.5 GFlops/s.
The CPU has a 32KB instruction cache and a 128KB 128-way set associative L1 data cache,
as well as an 8MB four-way set associative L2 cache with its own private bus. Each node
consists of 16 processors connected to main memory via a crossbar. Multi-node configurations
are networked via the IBM Colony switch using an omega-type topology.

4.2 Timing and Scalability

Figure 5 shows the Gflops per second reported by the two hybrid versions of LU-MZ, SP-MZ
and BT-MZ for the Class C problem size on the SGI Origin 3000. The number of CPUs
(or processors) is indicated by the Np × Nt combination, where Np is the number of MPI
or SMP processes and Nt is the number of threads per process. For LU-MZ and SP-MZ,
Nt is the actual number of threads assigned to each process; for BT-MZ, Nt is the average
number of threads per process. The Np×Nt values in the figure are those combinations that
produced the best performance for each benchmark for a given total number of CPUs. The
best combination is further discussed in the next section. The thread-to-processor pinning
was applied for all the runs on the SGI Origin 3000 reported in this section.

Overall, both MPI+OpenMP and SMP+OpenMP performed similarly, showing close to
linear speed-up with increasing number of CPUs up to 256. Coarse grain parallelism in LU-
MZ is limited to 16 processes due to the structure of the benchmark, and OpenMP threads
are required for scaling beyond 16 CPUs. The SP-MZ benchmark poses no restriction on
the coarse grain parallelism; in fact, the best performance is achieved with parallelism only
at the coarse level. For the Class C problem of BT-MZ, the load can be balanced at the
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Figure 5: Scaling of the Class C problem of LU-MZ, SP-MZ and BT-MZ on the Origin 3000.
The lines indicate linear speedup based on the 8 and 16 CPUs results.

coarse grain level up to 64 processes and threads are required for load balancing more than
64 CPUs. Both SP-MZ and BT-MZ demonstrated over 60 Gflops/s performance on 256
CPUs.

Detailed comparison of the computation and communication times in the benchmarks is
summarized in Table 4. The “Total” column indicates the total benchmark time, “RHS”
is the time spent in the forcing term (right-hand-side) calculation, “Solver” is the solver
time, and “exch qbc” indicates the communication time spent on boundary value exchange
between zones. RHS and Solver are the two most important computing components; they
were discussed in Section 3.1. The RHS and Solver times are closely matched between the
MPI+OpenMP and SMP+OpenMP versions. The ratio of communication time over total
time in both LU-MZ and BT-MZ increases slightly as the number of CPUs increases, but is
about 5% or less. However, SP-MZ spent more time in communication, especially the MPI
version, which shows 17% communication time on 128 CPUs. The cause of the increase in
communication time is being investigated. In general, SMPlib used in the SMP+OpenMP
version showed less communication overhead than the MPI library.

To examine the influence of the process-thread combination on performance, we ran the
hybrid versions of NPB-MZ on a single node of the IBM Power3 and the results from runs
with a fixed number of 16 CPUs are shown in Figure 6. Again, both the MPI+OpenMP
and SMP+OpenMP performed very similarly. In all cases, performance per thread drops
as the number of threads per process increases. Results from the Class A problem of NPB-
MZ obtained on the HP/Compaq SC45 are shown in Figure 7. Due to the availability of
only 4 CPUs in one shared memory node of this machine, we only ran the MPI+OpenMP
versions. As one can see, the performance of BT-MZ does not improve much beyond 16
CPUs, even though LU-MZ and SP-MZ still speed up. This is because the upper limit of 4
threads per node prevents better load balancing beyond 16 CPUs. In contrast, there is no
such a limitation on the SGI Origin 3000, due to the globally shared address space with a
single-system image. We will elaborate this point further in the next section.

10



Table 4: Timing profile in seconds of the three benchmarks obtained on the SGI Origin 3000
and with 1/10th of the benchmark iterations.

MPI+OpenMP SMP+OpenMP
CPUs Total RHS Solver exch qbc Total RHS Solver exch qbc

LU-MZ, Class C
8 150.34 41.98 107.13 1.21 (0.8%) 147.33 41.21 104.85 1.26 (0.9%)
16 73.02 20.72 51.61 0.69 (0.9%) 73.76 20.17 53.12 0.47 (0.6%)
32 30.61 10.19 19.44 0.54 (1.8%) 30.47 10.03 19.31 0.26 (0.9%)
64 15.65 5.46 9.46 0.28 (1.8%) 15.49 5.33 9.37 0.30 (1.9%)
128 8.61 3.04 4.71 0.29 (3.4%) 8.53 3.01 4.73 0.21 (2.5%)
256 4.93 1.67 2.39 0.25 (5.0%) 4.97 1.68 2.39 0.27 (5.3%)

SP-MZ, Class C
8 64.43 29.49 31.15 3.77 (5.9%) 63.72 29.31 30.80 3.61 (5.7%)
16 31.78 13.89 15.39 2.49 (7.8%) 32.56 14.93 15.75 1.88 (5.8%)
32 16.26 7.34 7.87 1.04 (6.4%) 16.14 7.58 7.84 0.72 (4.5%)
64 8.05 3.24 3.77 1.03 (12.9%) 7.75 3.47 3.75 0.52 (6.7%)
128 3.83 1.36 1.82 0.66 (17.0%) 3.41 1.35 1.80 0.25 (7.4%)
256 1.79 0.68 0.91 0.20 (10.8%) 1.69 0.66 0.90 0.13 (7.6%)

BT-MZ, Class C
8 99.53 15.14 83.02 2.07 (2.1%) 98.97 14.65 83.34 1.65 (1.7%)
16 49.15 7.32 41.01 1.15 (2.3%) 49.51 7.26 41.50 1.07 (2.2%)
32 25.15 3.62 21.30 0.39 (1.5%) 25.62 3.65 21.75 0.39 (1.5%)
64 13.50 1.79 11.39 0.41 (3.0%) 13.86 1.80 11.87 0.28 (2.0%)
128 7.16 0.99 5.86 0.36 (5.0%) 7.25 0.99 6.10 0.21 (2.8%)
256 4.11 0.62 3.17 0.36 (8.7%) 3.89 0.62 3.15 0.14 (3.7%)

4.3 Performance Model

Speedup of a run with Np processes and Nt threads per process can roughly be estimated by

PNp×Nt
= St/(Smg · fNt

) (1)

where St is the total problem size, Smg is the maximum size of a zone group assigned to a
process divided by the number of threads used, and fNt

is a weight factor incorporating the
number of threads. Assuming static scheduling in the OpenMP parallelization, we have an
empirical form

fNt
= [1 + (Nt − 1) (0.023 + 0.2/Sp)] · fib (2)

where fib = max(dSp/Nte, 1)Nt/Sp is an estimate of the load balancing factor from the
OpenMP parallelization and Sp is the typical loop size in which the OpenMP parallelization
is applied. For BT-MZ and SP-MZ, Sp = Gz; for LU-MZ, Sp = Gy/y-zones. The linear
dependency of fNt

on Nt was observed from runs with a fixed number of total CPUs on
both the SGI Origin 3000 and IBM Power3. Although the two constants were fitted for
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the SGI Origin 3000, the formula is a good estimate for other systems as well. Equation 1
does not take into account the cost of process communication, which, as indicated in the
previous section, is relatively small. The thread weight factor in equation 2 takes into account
the scaling degradation caused by the increased number of threads and the load imbalance
resulting from thread scheduling.

The left panel of Figure 8 compares the calculated speedup using equation 1 with the
measured values on the SGI Origin 3000 for the BT-MZ, Class A problem. As one can see
from the figure, the calculated values match very well with those measured, not only the
best Np × Nt combination (as indicated by the dash lines) but also the shape as a function
of the number of threads.

In the right panel of Figure 8 we plot the speedup for the best Np × Nt combination for
the SGI Origin 3000 and the HP/Compaq SC45. The Origin 3000 places no limitation on
the number of threads for each process, while the SC45 cluster allows only a maximum of
4 threads for each process due to the node limitation, which in fact limits the scalability of
BT-MZ, Class A problem beyond 16 processors. The calculation shows the correct trend
although the values are underestimated, primarily because cache effects are not considered
in equation 1. Clearly equation 1 can be used to find out the best combination of Np and
Nt for a given total number of processors.

Table 5 summarizes the calculated maximum number of processors up to which different
benchmark problems could run and achieve more than 50% parallel efficiency for a given
machine. This table could guide the running of a particular problem on a selected ma-
chine. We emphasize that these estimates do not take into account the cost of inter-process
communication.

4.4 Other Performance Issues

The hybrid implementation of NPB-MZ has demonstrated good scalability. We would like
to point out a few factors that could potentially limit the performance of NPB-MZ. First,
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Table 5: Calculated maximum number of processors up to which each NPB-MZ could run
and achieve more than 50% parallel efficiency.

SGI Origin 3000 HP/Compaq SC45
Class LU-MZ SP-MZ BT-MZ LU-MZ SP-MZ BT-MZ

A 512 256 64 64 64 16
B 512 1024 256 64 256 64
C 512 8192 1024 64 1024 256
D 1024 > 16384 4096 64 4096 1024

the coarse grain parallelization limits the maximum number of processes to the number of
zones for a given problem. For instance, LU-MZ allows a maximum of 16 processes. Second,
the number of OpenMP threads on the fine grain level is limited by the underlying hard-
ware/system software, as well as by the loop size to which OpenMP parallelization is applied.
On the HP/Compaq SC45, LU-MZ cannot scale beyond 16 × 4 = 64 processors. Third, the
load balancing with OpenMP threads for BT-MZ is also limited on the HP/Compaq SC45
due to the fact that this machine has only 4 CPUs per node. The shared memory architecture
of the SGI Origin 3000 poses fewer constraints on the use of threads.

We also observed the performance impact of using thread-to-processor pinning on the
hybrid codes on the SGI Origin 3000. Application performance on NUMA architectures
like the Origin depends on data and thread placement onto CPUs. Improper initial data
placement or unwanted migration of threads between CPUs can increase memory access time,
thus degrading performance. SGI provides system calls to bind threads to Origin CPUs.
We tested the effect of pinning versus no pinning on the hybrid SMP+OpenMP NPB-MZ
codes and the results are shown in Figure 9. Notice that pinning improves performance
substantially in the hybrid mode when more than one threads are used for one process. The
impact is even more profound as the number of CPUs increases. Pure process mode (e.g.
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16× 1) and pure thread mode (e.g. 1× 16) are not influenced by pinning. The small impact
of pinning on the BT-MZ benchmark is likely due to the more dominant effect of the load
imbalance in the Class A problem on 16 CPUs, as evident from the 16 × 1 run. A detailed
analysis of these results will be presented in a subsequent paper.
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Figure 9: Effects of thread-to-processor binding (pinning) on the SGI Origin 3000.

5 Conclusions

In summary, we have described the implementations of three multi-zone benchmarks that
are derived from the NAS Parallel Benchmarks. These multi-zone benchmarks are suitable
for exploiting multi-level parallelism, which exists in many important scientific problems.
The sequential implementation is a good candidate for parallelization tools and compilers
to exploit multi-level parallelization strategies, such as hybrid or nested OpenMP. The two
hybrid implementations, MPI+OpenMP and SMP+OpenMP, of the NPB-MZ benchmarks
have been tested on three different parallel machines and demonstrated good potential of the
hybrid programming model on these machines. Careful load balancing of the BT-MZ bench-
mark, which contains non-uniform-sized zones, is crucial for good performance. A simple
bin-packing algorithm, together with the use of thread reassignment, has presented satisfac-
tory results. For additional performance improvement on a large processor counts, further
examination of the communication cost in the load balancing algorithm may be needed. We
used an empirical formula to study the performance characteristics of the benchmarks and
estimate the best Np × Nt combination for running the hybrid codes. We plan to further
verify our performance model as indicated in Table 5 by extending runs on the IBM Power3
and HP/Compaq SC45 parallel computers.
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